Actor-Critic Sequence Training for Image Captioning
نویسندگان
چکیده
Generating natural language descriptions of images is an important capability for a robot or other visual-intelligence driven AI agent that may need to communicate with human users about what it is seeing. Such image captioning methods are typically trained by maximising the likelihood of ground-truth annotated caption given the image. While simple and easy to implement, this approach does not directly maximise the language quality metrics we care about such as CIDEr. In this paper we investigate training image captioning methods based on actor-critic reinforcement learning in order to directly optimise non-differentiable quality metrics of interest. By formulating a per-token advantage and value computation strategy in this novel reinforcement learning based captioning model, we show that it is possible to achieve the state of the art performance on the widely used MSCOCO benchmark.
منابع مشابه
Actor-Critic based Training Framework for Abstractive Summarization
We present a training framework for neural abstractive summarization based on actor-critic approaches from reinforcement learning. In the traditional neural network based methods, the objective is only to maximize the likelihood of the predicted summaries, no other assessment constraints are considered, which may generate low-quality summaries or even incorrect sentences. To alleviate this prob...
متن کاملAn Actor-Critic Algorithm for Sequence Prediction
We present an approach to training neural networks to generate sequences using actor-critic methods from reinforcement learning (RL). Current log-likelihood training methods are limited by the discrepancy between their training and testing modes, as models must generate tokens conditioned on their previous guesses rather than the ground-truth tokens. We address this problem by introducing a cri...
متن کاملPretraining Deep Actor-Critic Reinforcement Learning Algorithms With Expert Demonstrations
Pretraining with expert demonstrations have been found useful in speeding up the training process of deep reinforcement learning algorithms since less online simulation data is required. Some people use supervised learning to speed up the process of feature learning, others pretrain the policies by imitating expert demonstrations. However, these methods are unstable and not suitable for actor-c...
متن کاملConvergent Actor-Critic Algorithms Under Off-Policy Training and Function Approximation
We present the first class of policy-gradient algorithms that work with both state-value and policy function-approximation, and are guaranteed to converge under off-policy training. Our solution targets problems in reinforcement learning where the action representation adds to thecurse-of-dimensionality; that is, with continuous or large action sets, thus making it infeasible to estimate state-...
متن کاملAsymmetric Actor Critic for Image-Based Robot Learning
Deep reinforcement learning (RL) has proven a powerful technique in many sequential decision making domains. However, Robotics poses many challenges for RL, most notably training on a physical system can be expensive and dangerous, which has sparked significant interest in learning control policies using a physics simulator. While several recent works have shown promising results in transferrin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.09601 شماره
صفحات -
تاریخ انتشار 2017